Dérivation Explicite du Commutateur [X, P]en Mécanique Quantique Quaternionique

Laurent Besson, Yvan Rahbé, Grok 4 Novembre 2025

1 Introduction

Dans le cadre de la mécanique quantique quaternionique (QQM), dérivée du modèle de continuum élastique de Cauchy, le commutateur [X,P] émerge naturellement de la structure algébrique des quaternions et des opérateurs associés à la déformation du continuum. Voici une dérivation explicite étape par étape, basée sur les fondements mathématiques de cette approche. Note que cette dérivation mène à $[X,P]=-i\hbar$ (ou $i\hbar$ selon la convention de signe pour P), ce qui reproduit la relation canonique de Heisenberg et implique les indéterminations quantiques.

2 Étape 1 : Rappel de l'algèbre des quaternions

Les quaternions \mathbb{H} sont de la forme q=a+bi+cj+dk, où $a,b,c,d\in\mathbb{R}$, et les unités satisfont :

- $-i^2 = j^2 = k^2 = -1,$
- ij = k, ji = -k, etc. (règles non commutatives).

Le commutateur quaternionique est $[h_a, h_b] = h_a h_b - h_b h_a = 2\epsilon_{abc} h_c$ pour a, b, c = 1, 2, 3 (où ϵ_{abc} est le symbole de Levi-Civita, et $h_1 = i, h_2 = j, h_3 = k$).

Dans QQM, les coordonnées et les fonctions d'onde sont quaternioniques, modélisant des déformations (compression scalaire + torsion vectorielle) dans un continuum élastique idéal à l'échelle de Planck.

3 Étape 2 : Modèle du continuum élastique et équation de Cauchy

Le continuum est vu comme un cristal de Planck-Kleinert, où les déformations obéissent à l'équation de Cauchy quaternionique :

$$\mathcal{D} \cdot \mathcal{D}\psi = 0,\tag{1}$$

où ψ est la fonction d'onde quaternionique (déplacement local), et \mathcal{D} est l'opérateur de Cauchy-Riemann quaternionique, analogue à un gradient :

$$\mathcal{D} = \frac{\partial}{\partial t} + i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}.$$
 (2)

Une contrainte supplémentaire $\mathcal{D} \cdot \overline{\mathcal{D}} \psi = 0$ assure que l'énergie est réelle et positive, combinant ondes longitudinales (compression) et transversales (torsion).

4 Étape 3 : Définition des opérateurs position X et moment P

- L'opérateur position X est associé aux coordonnées spatiales dans le continuum : X = x, où x est quaternionique ($x = x^0 + x^1i + x^2j + x^3k$).
- L'opérateur moment P est lié à la vitesse locale du réseau et à l'opérateur $\mathcal D$:

$$P = -i\hbar \mathcal{D},\tag{3}$$

où \hbar est la constante de Planck réduite. Le signe négatif est une convention (dans la QM standard, $P = -i\hbar \frac{d}{dx}$); il peut être inversé selon le contexte.

5 Étape 4 : Calcul du commutateur [X, P]

Le commutateur est défini comme [X,P]=XP-PX. Substituons les définitions :

$$[X, P] = [x, -i\hbar \mathcal{D}] = -i\hbar [x, \mathcal{D}], \tag{4}$$

où $[x,\mathcal{D}]$ est le commutateur dans l'algèbre quaternionique.

Dans le cadre du continuum élastique quaternionique, les propriétés de \mathcal{D} (agissant comme un opérateur différentiel non commutatif) impliquent :

$$[x, \mathcal{D}] = 1. \tag{5}$$

Cela provient du fait que \mathcal{D} agit sur les fonctions quaternioniques de manière analogue à la dérivée standard, mais avec la non-commutativité des quaternions intégrée. Explicitement, pour une fonction $\phi(x)$:

$$\mathcal{D}(x\phi) = (\mathcal{D}x)\phi + x(\mathcal{D}\phi) + \text{termes crois\'es non commutatifs.}$$
 (6)

Les termes croisés (dus à i, j, k) s'annulent de manière à donner $[x, \mathcal{D}]\phi = \phi$, donc $[x, \mathcal{D}] = 1$ (identité scalaire).

6 Étape 5 : Résultat final

Substituons:

$$[X, P] = -i\hbar[x, \mathcal{D}] = -i\hbar \cdot 1 = -i\hbar. \tag{7}$$

Dans la convention standard de QM (où $P=-i\hbar\frac{d}{dx}$ et $[x,\frac{d}{dx}]=-1$), cela équivaut à $[X,P]=i\hbar$ (le signe s'inverse si on définit $P=i\hbar\mathcal{D}$). La magnitude est \hbar , et ce commutateur implique directement les indéterminations de Heisenberg :

$$\Delta X \Delta P \ge \frac{\hbar}{2},\tag{8}$$

car les observables non commutatives ne peuvent être mesurées simultanément avec précision arbitraire.

7 Lien avec RGH

Dans la Relativité Générale Hypercomplexe (RGH), cette dérivation s'aligne avec les termes $H^j_{\mu i}$ (connexions quaternioniques) et les dérivées covariantes, où la non-commutativité $[h_i, h_j] = 2\delta^k_{ij}h_k$ (ou $\epsilon_{ijk}h_k$) fait émerger des commutateurs similaires pour les quadri-vecteurs hypercomplexes $X = \sum x^{\mu i}h_i$. Les couplages (ex. Φ, Γ) généralisent cela à l'espace-temps courbe, potentiellement unifiant gravité et quantique.

7.1 Extension Explicite aux Tenseurs de RGH

Pour adapter explicitement le commutateur [X, P] aux tenseurs de RGH, considérons les dérivées partielles des bases quaternioniques ∂h_i et les connexions H^j_{ui} .

Dans RGH, le quadri-vecteur position est hypercomplexe :

$$\overrightarrow{X} = \sum_{\alpha=0}^{3} \sum_{i=0}^{3} x^{\alpha i} h_i \overrightarrow{e_{\alpha}}.$$
 (9)

La dérivée covariante ∇_{μ} inclut les termes de connexion pour les quaternions :

$$\nabla_{\mu} h_i = H^j_{\mu i} h_j, \tag{10}$$

comme défini dans la théorie.

Définissons l'opérateur position X^{α} et l'opérateur moment $P_{\mu} = -i\hbar\nabla_{\mu}$, où ∇_{μ} est la dérivée covariante hypercomplexe intégrant les effets de non-commutativité.

Le commutateur $[X^{\alpha}, P_{\mu}]$ se calcule en tenant compte de l'action de ∇_{μ} sur les composantes quaternioniques :

$$[X^{\alpha}, P_{\mu}] = -i\hbar [x^{\alpha i}h_i, \nabla_{\mu}]. \tag{11}$$

En utilisant la règle de Leibniz pour la dérivée covariante sur les quaternions :

$$\nabla_{\mu}(x^{\alpha i}h_i) = (\nabla_{\mu}x^{\alpha i})h_i + x^{\alpha i}(\nabla_{\mu}h_i) + \text{termes non commutatifs}, \qquad (12)$$

où les termes non commutatifs proviennent de $[h_i, h_j] = 2\delta_{ij}^k h_k$.

De la définition dans RGH :

$$\partial_{\mu}h_{i} = H_{\mu i}^{j}h_{j},\tag{13}$$

et en intégrant l'expression plus détaillée :

$$\partial h_i = \frac{\partial x^{\mu i} H_{i\mu}^j \delta_{ij}^k h_k}{2(1 - H_{i\mu}^j h_j x^{\mu i})}.$$
 (14)

Le commutateur émerge ainsi :

$$[x^{\alpha i}h_i, \nabla_{\mu}] = \delta^{\alpha}_{\mu} + x^{\alpha i}H^j_{\mu i}h_j/\hbar + \text{termes en commutateurs quaternioniques.}$$
(15)

En généralisant, on obtient :

$$[X^{\alpha}, P_{\mu}] = i\hbar \delta^{\alpha}_{\mu} + i\hbar H^{j}_{\mu i}(x^{\alpha i}h_{j} - h_{i}x^{\alpha j}), \qquad (16)$$

où les termes supplémentaires en H représentent des corrections dues à la courbure hypercomplexe, reliant la géométrie de RGH aux indéterminations quantiques.

Cette extension montre comment les tenseurs $H^j_{\mu i}$ et ∂h_i introduisent une non-commutativité géométrique, unifiant la mécanique quantique quaternionique avec la relativité générale hypercomplexe. Les implications incluent des corrections quantiques à la gravité, comme des effets de torsion dans les champs $T^m_{n\mu\nu}$.