Prédictions et Effets Observables de la Relativité Générale Hypercomplexe (RGH)

Laurent Besson

Novembre 2025

Résumé

Cette note présente les principaux effets observables attendus dans le cadre de la Relativité Générale Hypercomplexe (RGH) : le calcul du périhélie de Mercure, les ondes gravitationnelles, les corrections aux lentilles gravitationnelles, les effets quantiques potentiellement détectables et les échelles dénergie caractéristiques. Chaque section compare la prédiction RGH à celle de la Relativité Générale (RG) standard et discute des ordres de grandeur.

Table des matières

1	Calcul du périhélie de Mercure en RGH	2
	1.1 Rappel: RG classique	2
	1.2 Correction RGH	
2	Prédictions pour les ondes gravitationnelles	2
	2.1 RG standard	2
	2.2 RGH	3
3	Corrections aux lentilles gravitationnelles	3
	3.1 Déviation RG	3
	3.2 Effet RGH	3
4	Effets quantiques détectables?	3
	4.1 Commutation hypercomplexe et incertitudes	3
	4.2 Effet Casimir modifié	4
5	Échelles dénergie caractéristiques	4
6	Résumé des ordres de grandeur	
7	Conclusion	4

1 Calcul du périhélie de Mercure en RGH

1.1 Rappel: RG classique

En relativité générale standard, le décalage du périhélie de Mercure est donné par :

$$\Delta\phi_{\rm RG} = \frac{6\pi GM}{a(1-e^2)c^2},\tag{1}$$

où a est le demi-grand axe, e lexcentricité et M la masse solaire. Ce résultat correspond à 43'' darc par siècle, parfaitement confirmé par les observations.

1.2 Correction RGH

Dans la RGH, la métrique comporte une composante hypercomplexe :

$$\tilde{g}_{\mu\nu} = g_{\mu\nu} + j g'_{\mu\nu}, \qquad j^2 = +1.$$
 (2)

Le tenseur de courbure senrichit dun terme mixte :

$$R_{\mu\nu}^{(RGH)} = R_{\mu\nu}^{(RG)} + \eta \,\Xi_{\mu\nu},$$

où η est un paramètre sans dimension mesurant le couplage hypercomplexe. Dans la limite faible champ, le potentiel newtonien devient :

$$\Phi_{\text{RGH}}(r) = -\frac{GM}{r} \left(1 + \eta e^{-r/r_H} \right),$$

avec r_H une longueur déchelle hypercomplexe.

Le décalage du périhélie se modifie alors comme :

$$\Delta \phi_{\rm RGH} \simeq \Delta \phi_{\rm RG} \left[1 + \eta \left(\frac{a}{r_H} \right)^2 f(e) \right],$$
 (3)

où f(e) est une fonction de lex centricité ($f(0) \simeq 1$). Pour que la déviation reste compatible avec les mesures (< 0.1''/siècle), il faut :

$$|\eta| \left(\frac{a_{\text{Mercure}}}{r_H}\right)^2 < 10^{-3}.$$

Cela fixe $r_H > 10^{11}\,\mathrm{m}$ pour $\eta \sim 1$, donc des effets négligeables à léchelle du système solaire.

2 Prédictions pour les ondes gravitationnelles

2.1 RG standard

Les ondes gravitationnelles (OG) satisfont :

$$\Box h_{\mu\nu} = 0$$
,

avec deux polarisations transverses $(+, \times)$.

2.2 RGH

La décomposition hypercomplexe du champ métrique introduit des modes supplémentaires :

$$\tilde{h}_{\mu\nu} = h_{\mu\nu} + j h'_{\mu\nu}.$$

Les équations linéarisées deviennent :

$$\Box h_{\mu\nu} = 0, \qquad \Box h'_{\mu\nu} = m_H^2 h'_{\mu\nu},$$

où $m_H = \hbar/(r_H c)$ est une masse effective du mode hypercomplexe. Les conséquences sont :

- existence de **modes massifs** donde gravitationnelle (propagation subluminale),
- légère dispersion du signal GW sur de grandes distances $(\Delta v/c \sim (m_H c^2/E)^2)$,
- possibilité de **polarisation additionnelle longitudinale**.

Les observations LIGO/Virgo contraignent déjà $m_H < 10^{-22} \,\mathrm{eV}$, donc $r_H > 10^{13} \,\mathrm{m}$.

3 Corrections aux lentilles gravitationnelles

3.1 Déviation RG

En RG, la déviation angulaire dun rayon lumineux par une masse M est :

$$\delta_{\rm RG} = \frac{4GM}{bc^2},$$

où b est le paramètre dimpact.

3.2 Effet RGH

Dans RGH, le potentiel modifié $\Phi_{\text{RGH}}(r)$ engendre une correction :

$$\delta_{\text{RGH}} = \delta_{\text{RG}} \left(1 + \eta g \left(\frac{b}{r_H} \right) \right),$$

avec $g(x) \sim x^2/3$ pour $x \ll 1$. Les lentilles fortes (quasars, amas) limitent la correction relative à $< 10^{-3}$, donnant une borne similaire à celle du périhélie :

$$r_H > 10^{11} \text{ à } 10^{12} \text{ m}.$$

4 Effets quantiques détectables?

4.1 Commutation hypercomplexe et incertitudes

Lintroduction de composantes non commutatives ($[h_i, h_j] = 2\delta_{ij}^k h_k$) implique que, dans le secteur quantique, les opérateurs despace-temps obéissent à :

$$[x^{\mu}, x^{\nu}] \neq 0.$$

Cela engendre une **géométrie non commutative effective** à très haute énergie :

$$[x^{\mu}, x^{\nu}] \sim i \,\ell_H^2,$$

avec ℓ_H la longueur déchelle hypercomplexe. Si $\ell_H \sim 10^{-33}\,\mathrm{m}$ (échelle de Planck), les corrections sont non observables aujourdhui, mais pourraient affecter la dispersion des neutrinos ultra-relativistes ou les oscillations de saveurs.

4.2 Effet Casimir modifié

Un vide hypercomplexe pourrait introduire un déphasage de mode entre les deux composantes $g_{\mu\nu}$ et $g'_{\mu\nu}$, modifiant le spectre du vide :

$$E_0^{\text{RGH}} = E_0^{\text{RG}} (1 + \eta'),$$

avec η' proportionnel à $(\ell_P/r_H)^2$. À ce jour, aucun effet mesurable na été observé, mais la signature serait conceptuellement identifiable dans un vide non commutatif.

5 Échelles dénergie caractéristiques

Léchelle caractéristique hypercomplexe est donnée par :

$$E_H = \frac{\hbar c}{r_H}.$$

Les contraintes expérimentales $r_H > 10^{13}\,\mathrm{m}$ donnent :

$$E_H < 10^{-22} \,\text{eV},$$

ce qui rend les corrections macroscopiques très faibles. Cependant, à léchelle de Planck $(r_H \sim 10^{-35} \,\mathrm{m})$, on obtiendrait :

$$E_H \sim 10^{19} \, {\rm GeV},$$

soit précisément léchelle où une description hypercomplexe de la gravitation pourrait devenir indispensable.

6 Résumé des ordres de grandeur

Effet	Sensibilité actuelle	Bornes sur r_H
Périhélie de Mercure	$< 10^{-3} \text{ relatif}$	$r_H > 10^{11} \text{ m}$
Lentilles gravitationnelles	$< 10^{-3}$	$r_H > 10^{12} \text{ m}$
Ondes gravitationnelles (GW)	$m_H < 10^{-22} \text{ eV}$	$r_H > 10^{13} \text{ m}$
Effets quantiques	non mesurés	$\ell_H < 10^{-20} \text{ m}$

7 Conclusion

Les prédictions de la Relativité Générale Hypercomplexe coïncident avec la RG dans toutes les limites expérimentales actuelles. Les déviations éventuelles apparaissent sous forme de corrections exponentielles damplitude η et de portée r_H , analogue à un champ de masse ultra-légère. À basse énergie, la RGH est donc *indiscernable* de la RG, mais elle offre un cadre cohérent pour la gravité quantique et les géométries internes de spin.